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Abstract

Mammograms taken by two views: cranio-caudal (CC) and medio-lateral oblique (MLO) views provide only 2D projections of the

microcalcifications, which lack the depth information. Thus, envisioning the relative lesion location from mammograms is a challenge for

radiologists. To assist radiologists in locating and rendering lesion tissues, a modified projective grid space (MPGS) scheme is proposed to

reconstruct 3D microcalcifications. The MPGS scheme reconstructs 3D microcalcifications in a unique space defined by corresponding

points and the epipoles retrieved from the fundamental matrix of the CC and MLO views. Since only corresponding points of images are

required in the proposed MPGS scheme, we can avoid the difficulty associated with most reconstruction approaches that require prior

complicated calibration of X-ray machine. Considering the deformation of the breast, a new method based on the concept of bundle

adjustment is proposed to rectify the 3D locations of reconstructed microcalcifications by uncompressed breast model reconstructed from the

real patient body using MPGS scheme with iterative closest point (ICP). Then, the reconstructed microcalcifications are augmented in the

real patient body model to show their relative positions.
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1. Introduction

Mammogram is one of the most convenient, high

accurate and effective breast cancer diagnosis methods for

early breast cancer detection. For diagnosis, mammo-

grams are usually taken by two views: cranio-caudal (CC)

and medio-lateral oblique (MLO) views. After diagnosis,

if the needle biopsy is required, these two views of

mammograms are used to provide the basic concept of

the lesion locations. However, since each mammogram

provides only 2D information, envisioning the relative

lesion location, which relies on the radiologists’ experi-

ences, is a challenge for radiologists. Therefore, it is
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common to see that repetitive needle biopsies are

conducted for sampling the lesion tissues due to the

lack of accuracy in locating mammograms. As a result,

patients usually suffer the pain in the procedure due to the

repetitive needle biopsies. Thus, a computerized system,

which can assist radiologists in accurately locating

lesions, particularly 3D positions, is important. Recently,

to help radiologists to locate the microcalcifications and

tumors in the breast in 3D, Niklason et al. [1] combined

multiple views of the breast to reconstruct the 3D

information of breast based on tomosynthesis. Maidment

et al. [2] presented another approach based on a stereo

breast biopsy system from seven views. To remove the

requirement of multiple views, Yam et al. [3] presented a

novel model-based method for reconstructing the micro-

calcifications of breast incorporating with a prior

geometric model from two mammograms, and they used

a number of tissue movement approximations to adjust

the compressed breast.
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In this paper, to reconstruct 3D locations of

microcalcifications from two mammograms without any

prior geometric model or X-ray machine information, we

proposed a modified projective grid space (MPGS)

scheme [4,5] based on the fundamental matrix [6–8]

and pinhole camera system. In MPGS scheme, given any

corresponding point pair in two images, the 3D location

of the point can be defined uniquely. With this approach,

the most frequently encountered difficulties associated

with 3D reconstruction of complex calibration can be

avoided since only corresponding points of the images in

patient’s mammograms are required. As we know that

mammograms are taken under breast compression, the

location of lesions may vary with the pressure of

compression applied to the breast. Thus, the recon-

structed microcalcifications from the mammograms may

misalign with their real positions. To deal with this

misalignment problem, a new rectification method based

on the concept of bundle adjustment is proposed to

adjust the locations of reconstructed microcalcifications

by global optimization of the breast alignments between

the contours of the real breast model and compressed

breast in the mammograms. After the rectification, the

microcalcifications are augmented in the real human

body model to further demonstrate their relative 3D

locations and shapes in the breast. The real human body

model is reconstructed based on the proposed MPGS

scheme with the iterative closest point (ICP) algorithm

[9–11] from several continuous images taken around the

patient without prior camera information required. In this

part, the ICP algorithm is employed to merge the partial

shapes of the human body obtained by MPGS scheme

into a whole human body model. Finally, the 3D

microcalcification models are augmented on the real

human body model according to the ratio of pixel and

world coordinate.

In order to accomplish the reconstruction, the 2D

locations of microcalcifications in the mammograms should

be extracted for the registration of the corresponding

microcalcifications in CC and MLO views. Recently,

many computer assisted algorithms have been proposed

for the detection and the segmentation of microcalcifica-

tions from mammograms [12–17]. To solve the problem of

microcalcifications detection, in this paper, three modules

[18–21] are presented. The first module extracts the breast

region from mammograms based on K-means clustering-

based thresholding. Then, the second module detects

suspected regions based on blanket method. The third

module extracts the real microcalcifications based on the

assumption that the average of gray-level of microcalcifica-

tions on the mammograms is generally brighter than that of

other tissues. Following the microcalcifications detection is

the registration of corresponding microcalcifications in CC

and MLO views. However, the registration of microcalci-

fications is not an easy job, since the breast will be deformed

when taking mammograms. Therefore, it is essential to use
features that are irrelevant to breast shapes for the

registration. In our approach, the gradient code (GC),

energy code (EC) and local entropy code (LEC) are applied

in order for the registration. According to the result of

registration, the 3D locations of microcalcifications can be

reconstructed by the modified projective grid space

(MPGS).

In the remaining parts of the manuscript, Section 2

describes the detection of microcalcifications. The regis-

tration and 3D reconstruction of microcalcifications is

presented in Section 3. Section 4 presents the MPGS-ICP

scheme in the reconstruction of 3D human breast model

from a sequence of patient surrounding images. The

rectification of the 3D locations of the microcalcifications

based on the real human breast model is proposed in Section

5. Experiments are shown in Section 6. Finally, Section 7

provides the conclusions.
2. Microcalcifications detection

Before the reconstruction of microcalcifications, three

modules [18–21] are presented to extract the location of

microcalcifications in the mammograms. The first module is

designed to extract the breast region from mammograms

based on K-means clustering-based thresholding method.

After breast region extraction, a silhouette of the breast was

segmented. The second module refers to the blanket method

[22,23] is presented to extract suspected microcalcifications.

Let [(x, y), I(x, y)] be the surface area of an object at (x, y)

with the gray level I(x, y). The surface area can be estimated

by measuring the volume between an upper blanket Ur(x, y)

defined by

Urðx;yÞZmax UrK1ðx;yÞC1;
max

jðs;tÞKx;yÞj%1
UrK1ðs;tÞ

� �
(1)

and a lower blanket, Lr(x, y) defined by

Lrðx;yÞZmax LrK1ðx;yÞK1; min
jðs;tÞKðx;yÞj%1

LrK1ðs;tÞ

� �
(2)

whereU0(x, y)ZL0(x, y)ZI(x, y) and r is a distance above or

below the surface and is a scaling factor of the fractal

dimension. The surface area V(r) is defined as follows

VðrÞZ
1

2

X
ðx;yÞ

f½Urðx;yÞKUrK1ðx;yÞ�C ½LrK1ðx;yÞ

KLrðx;yÞ�g (3)

Since V(r) is proportional to r, it can be represented as

VðrÞZ k,r2KD (4)

Using Eq. (4), we can calculate the fractal dimension D

based on log V(r) versus log r as follows
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DZ 2K
log VðrÞKlog k

log r
(5)

The volume V(r) is considered as an image surface with

the variance specified by the scaling factor r while D can

be used as a measure of image texture characterization.

To detect the microcalcifications, the properties of

high gradients and variances in texture of microcalcifica-

tions are considered. In this case, D provides an

important indication of the existence of clustered

microcalcifications.

To further detect the real microcalcifications from

suspected regions, the third module, based on the

assumption that the average of gray-level of microcalcifica-

tions on the mammograms is generally brighter than that of

other tissues, was applied. To avoid the noise, the third

module first enhances the low intensity of calcified pixels of

microcalcifications by using gradient enhancement. Then,

the low contrast of enhanced calcified pixels is improved by

using contrast enhancement to reduce the intensities of un-

calcified pixels so that the contrast can be increased. Next,

to remove and suppress the undesired high intensity

pixels of other breast tissues, a Gaussian filter is applied.

Finally, entropy-based thresholding [24–27] is applied

to obtain the binary image that shows the locations of

microcalcifications.
and IðlK1;kÞZ jÞ
3. Registration and shape reconstruction of

microcalcifications

In order to reconstruct the 3D models of microcalcifica-

tions, the registration of the microcalcifications between CC

and MLO views is required. To achieve the registration, the

gradient code (GC), energy code (EC) and local entropy

code (LEC) are applied in order. Gradient code captures the

changes in gray levels of each detected cluster micro-

calcifications. The energy code describes the energy of each

detected cluster microcalcifications in terms of variance.

Local entropy code measures the information contained in

each detected cluster microcalcifications.

The gradient code (GC) is calculated by the co-

occurrence matrix of the texture of the mammograms.

Assume that the gray level range isGZ{0, 1,., LK1}. Let

nij be the number of transitions made from gray level i to

gray level j according to two pixel relative locations. In this

paper, we define

nij Z
XM
lZ1

XN
KZ1

dðl;kÞ (6)

where

dðl;kÞZ
1; if ðIðl;kÞZ i and Iðl;kK1ÞZ jÞ or ðIðl;kÞZ i

0; otherwise

(

(7)
I(l,k) is the gray level of the pixel at location (l,k) and

M!N is the size of the image. From Eq. (6) we define

nZ
PLK1

iZ0

PLK1

jZ0

nij where the indices i and j are taken over the

gray level range G. The co-occurrence matrix is then

defined by WZ Pij

� �
i;j2G where pijZnij/n. Let t be the

threshold for isolating objects. Thus, the co-occurrence

matrix thresholded by t can be further divided into four

quadrants. Since microcalcifications are considered as

foreground, the gradient code is defined as follows:

GCZ
1

ðLKtÞ!ðLKtÞ

XLK1

iZtC1

XLK1

jZtC1

jiKjjpij (8)

The energy code describes the energy of each detected

cluster microcalcifications in terms of variance. For each

N!N image block described in the registration pro-

cedure, let xiZ ðxi1;xi2;.;xiN2 ÞT be the vector correspond-

ing to the ith row vector in the image block. The

correlation matrix of the image block can be calculated

as RZ ð1=N2Þ
PN2

iZ1

xix
T
i . The energy code is then defined by

the largest eigenvalue of R. That is, let flig
N2

iZ1 be the

eigenvalues of R. Then energy code is obtained as

ECZlmaxZmax1%i%N2flig.

Local entropy code measures the information contained

in each detected cluster microcalcifications. Assume that

cluster microcalcifications are information sources as

pFFij Z
nijPLK1

iZtC1

PLK1

jZtC1

nij

Z
nij=nPLK1

iZtC1

PLK1

jZtC1

nij=n

 !

Z
pijPLK1

iZtC1

PLK1

jZtC1

pij

(9)

From Eq. (9) fpFFij gi2G1;j2G1
forms a probability distribution

of foreground to foreground (FF) and its corresponding

entropy is given by

HFFðtÞZK
XLK1

iZtC1

XLK1

jZtC1

pFFij log p
FF
ij (10)

The local entropy code (LEC) is defined by Eq. (10), i.e.

LECZHFF(t
*), where t* is the optimal threshold generated

by entropic thresholding method.

The registration procedure of microcalcifications is

performed as follows:

1. Divide images in CC and MLO views into N!N image

blocks with half block size,
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Fig. 2. The modified projective grid space (MPGS).
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2. From each image block, calculate GC, EC and LEC for

registration.

3. All image blocks in CC and MLO views are then

compared in the priority order of GC, EC and LEC in a

binary decision tree.

4. When the decision reaches a tree leaf, each image block

in CC and MLO views is prioritized according to these

three features.

In our system, after automatic microcalcifications

detection and registration, the results can be shown to the

radiologists to perform further manual selection of the

corresponding microcalcifications between CC and MLO

views or directly continue the following reconstruction

procedure. From the results of microcalcifications regis-

tration, the corresponding image blocks between CC and

MLO views are obtained. The corresponding points of

images can be easily retrieved from the corresponding

image blocks. Based on the corresponding microcalcifica-

tions, modified projective grid space (MPGS) scheme [4],

which is a 3D reconstruction algorithm from two images

without calibration, is presented to reconstruct the 3D model

of the microcalcifications. This algorithm is based on the

concepts of projective grid space presented by Saito and

Kanade [5], and is described as follows. Given two images

(Fig. 1), assume that a pixel in the first image is (p, q) and its

corresponding point of the second image is (r, s). In the

projective grid space, the world coordinate of the image

point is then defined as (p, q, r). The camera positions of

the two basis views are defined as (pc, qc, e12r) and (e21p,

e21q, rc), where (pc, qc) and (sc, rc) are the centers of the first

image and second image, respectively. The e12r here is the r

element of epipole in the second image, and (e21p, e21q) is

the epipole in the first image. In general, to render the 3D

objects in a common graphic library for example OpenGL,

the objects’ coordinates are required to be in the Euclidean

space. However, the projective grid space is not the

Euclidean space because the grid in the space is not cubic.

Therefore, to make each projective grid closer to cubic
Grid      ( p ,q ,r )
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q
r

s
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Fig. 1. The projective grid space.
shape of the Euclidean space, the two basis images are

required to be perpendicular to each other. To avoid the

restriction of camera position, we propose the modified

projective grid space (MPGS) scheme for reconstruction by

using a new vector Ðd (Fig. 2) that is almost perpendicular to

both vectors Ðp and Ðq in the projective grid space as the z-axis

in Euclidean space. The new coordinate system that is

composed by (Ðp, Ðq, Ðd) is called ‘modified projective grid

space’ (MPGS).

To reconstruct 3D shapes in the MPGS, in Fig. 2, the

vector Ðb is used to find the mapping relation between Ðr and
Ðd . For a point (r 0, s 0) on the second image, its corresponding
Ðb is equal to

Ðb Z ÐaC Ðq Z ÐCr 0 C ðCOP2KCOP1ÞK ÐC1 (11)

In Eq. (11), ÐC1 can be calculated as

ðe21KCOP1ÞZ

pi qi C1i

pj qj C1j

pk qk C1k

2
64

3
75

e21p

e21q

1

2
64

3
75 (12)

The ðCr 0 will be

ÐCr 0 Z

ri si C2i

rj sj C2j

rk sk C2k

2
64

3
75

r 0

s0

1

2
64

3
75 (13)

where C2i, C2j, and C2k can be calculated as follows

ðe12KCOP2ÞZ

ri si C2i

rj sj C2j

rk sk C2k

2
64

3
75

e12r

e12s

1

2
64

3
75 (14)

With so obtained vector Ðb, the projection proj of Ðb on Ðd is

projZ
Ðd,Ðb

jÐdj
(15)

In this manner, the projection of Ðb on Ðd is treated as the third

element of MPGS. From the described derivation, it is clear

that the epipoles of two images are required. To calculate

the epipoles, the fundamental matrix requires to be

calculated by only using corresponding points. Thus, the

difficulty associated with the calibration of the X-ray
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machine can be avoided. In this manner, all corresponding

center points of microcalcification clusters on CC and MLO

views are defined uniquely in MPGS. As a result, the MPGS

scheme approximates the Euclidean space and each

modified grid is treated as the cubic. Since the 3D

microcalcifications in two mammograms are reconstructed

by MPGS, which is a new space coordinate that can

approximate the Euclidean space, the result of the

reconstructions can be rendered in any standard graphic

library, for example OpenGL, without any transformation.

With these center vertices, the 3D locations of the

microcalcifications can be obtained.

To further obtain the remaining 3D vertices of the

microcalcification clusters in the 3D space, we first take the

center C of the microcalcification as the start point. Based

on this center C, vertices Vi, iZ1.m, around the

registration center C of the microcalcification lesions are

projected to CC and MLO views, respectively. If the

projection of Vi locates at the same corresponding

microcalcification blocks on both CC and MLO views, Vi

is regarded as a vertex of the microcalcifications. By this

approach we can gradually obtain the microcalcification

vertices in the 3D positions and therefore, the shape of the

microcalcifications. The obtained shape resolution can

achieve the accuracy, which is limited only by the

digitization resolution.
4. 3D human model reconstruction

Due to the breast compression, the reconstructed

microcalcifications would deviate from their real positions.

To adjust relative locations of these 3D microcalcifications

in the breast, we first reconstruct the real human model from

the images of the patient. Then we use the shape of the

breast on the real human model to rectify the locations of the

microcalcifications. After obtaining the rectified micro-

calcifications, we augment and render them to the real

human model. To reconstruct the 3D human model, a new

algorithm named MPGS–ICP that combines MPGS scheme

and iterative closest point (ICP) from multiple images is

proposed as follows.

At first, at least eight corresponding points are specified

manually between every two neighboring human body

images Ii, IiC1. With these specified corresponding points,

the fundamental matrix between two neighboring images

can be computed [7]. By using the fundamental matrix, we

can find the corresponding epipolar line liC1 on IiC1 of the

image point xi on Ii. According to epipolar geometry [8], the

corresponding point xiC1 of xi that must locate on

the corresponding epipolar line liC1, and then xiC1 can be

obtained by searching the epipolar line liC1. With more

corresponding points between two neighboring images, the

reconstructed partial shapes of the human body will become

more accurate. Since the MPGS-based scheme only

reconstructs the partial shape of the object from two
neighboring images, the iterative closest point (ICP) [9–

11] algorithm, that can perform global and local shape

matching, is presented to merge these partial shapes

reconstructed by MPGS into a whole object. In the ICP

procedure, we define one of the partial shapes as the model

shape and its neighboring partial shape as the data shape.

The ICP then registers the model shape with the data shape

through matching edge information. After the edges of

model shape and data shape are matched, we can stitch the

data shape with the model shape according to the matched

edge. Thus a new shape is obtained by merging these two

neighboring shapes (the current data shape and model

shape), to represent a larger shape of the real human body.

The new shape is considered as a new model shape, and the

ICP procedure is repeated to register it with the next

neighboring partial shape, which will then be regarded as

the data shape. With this procedure, the shape of the whole

body can be obtained.

In our approach, the partial shape, which is reconstructed

using the images taken from the front side of the patient, is

chosen as the initial model shape, while the other

reconstructed partial shapes are considered as data shapes.

Let the 3D points on the model shape X be represented as Xi

(iZ1, 2,., Nx) and their corresponding 3D points on the

data shape P be Pi (iZ1, 2,., Np). Assume that the

transformation from the a data shape point Pi to model shape

point Xi is represented as

Xi ZRPi CTCNi (16)

where R is a 3!3 rotation matrix, T is a 3!1 translation

vector, and Ni is a noise vector. To find the transformation

matrices R and T between data and model shapes, the

following equation should be minimized

XN
iZ1

kXiKðRPiKTÞk2: (17)

As the correspondences between the continuous images of

patient’s body are essential to the computation of the

transformation R and T, ICP algorithm is conducted. Let the

distance between the model shape X and a data point Ðp on

the data shape P be

dðÐp;XÞZmin
Ðx2X

kÐxKÐpk; (18)

and Y be the closest points of model shape X and data shape

P

Y ZCðP;XÞ; (19)

where C is the closest point operator. With the closest points

Y, the least square operation O is computed as:

ðR;T;dÞZOðP;YÞZmin
XN
iZ1

kYiKðRPiKTÞk2: (20)

The steps of MPGS–ICP algorithm is summarized as

follows
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1. Assign the projective grid space coordinates of epipoles

and camera centers for every two neighboring images.

2. Calculate the vector ÐCi and ÐCiC1 according to the general

pinhole camera model by (12) and (14).

3. Calculate Ðb of corresponding pixels on the second image

and project each Ðb on Ðd .
4. Assign the initial model shape X to be the partial shape

obtained from the two front images of the patient and

pick one of its neighboring partial shapes as the data

shape P.

5. Compute the transformation R and T between model

shape and data shape using iterative steps

a. Initialize parameters: P0ZP, RZI, and TZ0.

b. Compute the closest points: YkZC(Pk, X).
c. Compute least square solution (Rk, Tk, dk)ZO(P0,

Yk).

d. Apply PkC1ZRkP0CTk.

e. Compute the mean square error and examine the

termination condition. If the mean square error is

larger than a threshold value, go to step b; otherwise,

terminate the iteration and go to step f.

f. Overlay the data shape to the model shape according

to the transformation and obtain a new model shape.

g. If all the partial shapes are merged, terminate the

procedure. Otherwise, take the next neighboring

partial shape as the data shape and go to step 5 to

repeat the procedure with the new model shape and

the new data shape.

With this algorithm, the entire 3D human body model is

reconstructed. The reconstructed 3D human body model,

which, as may have been noted, is obtained under

uncompressed mode, will be used in the Section 5 as a

golden model in the rectification of microcalcifications.
5. Rectifying locations of microcalcifications

As we have learned from Section 3, the microcalcifica-

tions are reconstructed from mammograms, which are taken

under breast compression. Thus, it is necessary to adjust the

locations of the microcalcifications so that the microcalci-

fications can be restored into its original positions in the

breast. In our approach, the concept of bundle adjustment

[29,30], which is a standard technique to optimize the 3D

structure of points and motion by fitting the 2D image

feature correspondences across views, is used to rectify the

3D coordinates of microcalcifications into the coordinates in

an uncompressed breast.

We set the view direction of the virtual camera on the CC

view, from the top of the breast, on the uncompressed

human breast model reconstructed in Section 4. Then, we

also set the view direction of the virtual camera on the MLO

view, from side view of the breast. From these two viewing

directions, we can obtain two images CCH and MLOH,

respectively. In the following, the contours of the
uncompressed breast model from the CC and MLO views

can be retrieved from the CCH and MLOH. We also

retrieved the breast contours from the CC and MLO views

of mammograms. Then, for each contour, we first

approximate it by polygon line segments. From the polygon

line segments, piece-wise correspondences of the breast

contours between CCH and CC pair are obtained. Similarly,

we can also obtain the piece-wise correspondences between

MLOH and MLO pair. Then, we adjust the 3D positions

(vertices) of the uncompressed breast model and the

projection matrices, which are applied to obtain CCH and

MLOH, by minimizing the distance of the corresponding

contour points between CCH and CC pair and MLOH and

MLO pair simultaneously. Let Xi be the ith vertex of the

uncompressed human breast model and PCCH
ðXiÞ and PMLOH

ðXiÞ denote the 2D image projection points of Xi in CCH and

MLOH views, respectively, where PCCH
ð,Þ and PMLOH

ð,Þ are
the perspective projection matrices from viewing directions

of CC and MLO views of virtual camera. Also let the image

points of polygon line segments on the breast contours from

the CC and MLO views be represented by uCCi and uMLOi,

respectively. The total distance error between the contours

of CCH and CC pair and MLOH and MLO pair is defined as

EZ
XN
iZ1

ui½ðuCCiKPCCH
ðXiÞÞ

2

C ðuMLOiKPMLOH
ðXiÞÞ

2�; (21)

where uiZ1 when the projection of the ith vertex is on the

contour, and uiZ0, otherwise. The minimization is

executed by the iterative non-linear Levenberg–Marquardt

optimization algorithm [31]. After the minimization, the

new positions of the 3D breast model and the new projection

matrices to obtain CCH and MLOH views can be computed.

Applying the new projection matrices on the new 3D breast

model, we can obtain new CCH and MLOH images. From

the new CCH and MLOH, the contours of the 3D breast

model from the CC and MLO views can be retrieved. Then,

we approximate the new contours by line segments again

and repeat the same procedure mentioned above until the

distance error E is smaller than a threshold value. According

to the procedure, the corresponding image projection of the

original 3D human breast model on the mammograms can

be obtained. We then consider those spaces (points or

voxels) in the original 3D human breast model whose image

projections are within the same registered microcalcifica-

tions regions on both CC and MLO mammograms as the

microcalcifications. As the projection could be conducted

on any coordinate values, it should be noted that the

resolution of the points in the 3D human breast model

should not be limited by any constraint except by the

resolution in the microcalcifications. Thus, the 3D positions

of the microcalcifications and their shapes in the uncom-

pressed breast can be obtained.



Fig. 3. Mammograms used for registration test. (a) A CC view; (b) an MLO

view.
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As it might have been noted that our approach requires

two views to reconstruct the locations of microcalcifica-

tions. However, this limitation should not significantly

hinder its applicability. In general, when a microcalcifica-

tion cluster is identified in one view, it should be also

identified in the other view. If the microcalcification cluster

is not identified in the other view, the microcalcifications

may be so close to the chest wall not to be able to pull out for

making the film or the patient could not tolerate the filming

due to hurt for the procedure. As the density of the subtle

microcalcification cluster is very similar to the glandular

tissue, under exposure of the film or increased density of the

breast parenchyma might also cause difficulty in detection

of the microcalcifications. However, these problems could

be solved by readjustment of the exposure condition or

appropriate compression to the breast tissue. In [32],

Hackshaw et al. revealed that in 23 of the 110 women, the

breast cancer was missed in one view and only two were not

visible on the oblique view. It also indicated that cancers

missed using a single oblique view tended to be smaller and

lacked microcalcifications. Therefore, in breast cancer with

microcalcifications, when compared with the detection

between one view and two views, less misdiagnosed cases

are found from two view mammograms.
Fig. 4. Final result of registration.
6. Experiments

In the experiment of microcalcifications registration, 15

pairs of CC and MLO views from Taichung Veterans

General Hospital were used for evaluation. All these cases

are specially selected such that the lesions can be visible

from ultrasound. To test the proposed registration methods,

we used mutual evaluation method to register microcalci-

fications from CC to MLO views and from MLO to CC

views. Thus, the number of evaluation pairs is 30. In these

30 evaluation pairs, only one pair was miss-matched. That

is, in one microcalcification pair, from the CC view to MLO

view, the corresponding microcalcifications were identified

correctly, but from MLO view to the CC view, the

corresponding microcalcifications could not be identified.

As a result, the correct registration accuracy of our proposed

registration method achieved about 96.7% (29/30). Fig. 3(a)

and (b) show the example mammograms containing two

groups (A and B) of clustered microcalcifications marked in

CC and MLO views, respectively. Fig. 4 shows an example

of the corresponding results after the registration. The

corresponding microcalcifications of the CC view are

marked in the grids of the MLO view. Based on the

registration results, the two groups of clustered micro-

calcifications can be localized in a 3D visualization space by

MPGS.

In order to evaluate the accuracy of the proposed method,

both artificial phantoms and comparisons with ultrasound

position reports were performed. In the experiments,

artificial phantoms were made by using soft silica gel to
simulate the soft tissue of the human breast. Several groups

of metals were inserted into the phantoms to represent the

locations of the microcalcifications in phantoms. The real

positions of the inserted metals were considered as

the ground truth of the locations of the microcalcifications

in the experiments. Then, we captured the mammograms of

the phantoms. From the mammograms of the phantoms,

the metals in the phantoms were detected and registered. To

further consider the deformation of the phantoms during

snapping, the rectification method proposed in our paper

was applied. In the rectification, we first projected the

uncompressed breast model on the mammogram of the

phantom, represented by black contour in Fig. 5, and obtain

the initial contour of the uncompressed breast, as shown in

cyan in Fig. 5(a), according to the virtual camera. To adjust

the uncompressed breast model, we used the constraint Eq.

(21) to modify the shape and projection matrix of the virtual

camera so that the cyan contour can approach the black



Fig. 5. The deformation results during the rectification in adjusting the

contour of the real breast model to fit the breast contour in

the mammograms, where the cyan curve represents the contour of the

uncompressed model and the black curve represents the contour of the

compressed breast in the mammograms. (a) Shows the initial contour; (b)–

(e) are the results of 33, 89, 121, 139 iterations and (f) shows the final result.
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contour. Fig. 5(a)–(f) show the optimization steps from the

uncompressed phantom to the compressed phantom. Table 1

shows the obtained center positions of the microcalcifica-

tions after rectification. For comparison, the reconstructed

center positions without rectification are also listed. The

‘error’ in Table 1 is defined as the Euclidean center distance

between the ground truth position and the reconstructed

position. Without adjustment, the center positions of the

microcalcifications by the MPGS scheme are around

4–8 mm. After the adjustment, the errors are decreased to

about 2 mm. In clinic, the tissue specimen from micro-

calcifications, which has to be removed, is bigger than 5 mm
Table 1

The estimation results of the positions of microcalcifications in phantoms by MP

Image no. Real position (mm) MPGS

Pos. (mm) Err

R01 (K10, 18, 25) (K10, 14, 27) 4.4

R02 (17, K16, 31) (21, K18, 34) 5.3

R03 (K40, K42, 43) (K36, K39, 43) 5.0

L01 (15, 7, 12) (14, 13, 17) 7.8

L02 (19, 15, 27) (19, 18, 22) 5.8

L03 (5, K23, 41) (6, K16, 40) 7.1
in size generally. In this case, our method can perform the

sufficient accuracy to assist the surgeon in removing the

tissue.

The evaluation of lesion localization is also performed by

comparison with the position reports from ultrasound on the

same 15 patients. The positions of tumors and clustered

microcalcifications of these patients were confirmed in the

surgery operations and by ultrasound scanning, which is a

traditional approach for identifying the locations of masses

before biopsy. Before surgery, these patients also went

through mammogram screening with 0.1 mm/pixel resol-

ution. Thus, both the locations detected by ultrasound

scanning and the proposed 3D reconstruction method can be

obtained. In clinic, to provide reference locations of tumors

discovered during ultrasound scanning, the radiologists use

quadrants to locate tumors from ultrasound scanning.

Although such an approach provides only 2D information

of tumors, it can still provide the radiologists the rough

locations of tumors when performing needle biopsy. Since

we cannot accurately obtain the 3D locations of tumors in

the breast for ground truth, we performed orthographic

projection of our reconstructed results on the 2D quadrants

and compared projection results with results from ultra-

sound scanning. Complying with the approach used in the

ultrasound report, the breast region is divided into 24

quadrants with the nipple as the center. Based on our

algorithm, all the reconstructed tumors and clustered

microcalcifications are located at the same positions as

those obtained from ultrasound scanning. Fig. 6 shows the

locations of reconstructed clustered microcalcifications

(red) and the positions of the clustered microcalcifications

(blue) from ultrasound scanning, from four typical cases for

comparison. Please note that our reconstructed algorithm

not only provides 2D information as ultrasound provides,

but also 3D locations of tumors and microcalcifications in

the breast.

Figs. 7 and 8 show the examples of reconstructed

microcalcification clusters from various perspective views.

Our reconstruction method obtained all the vertices of the

microcalcifications by projecting the neighboring vertices of

the center to the CC and MLO views. Those vertices, whose

projections locate on the microcalcifications in CC and

MLO views, were considered as the vertices of the

microcalcifications. Then a sphere is used to represent a

vertex of the microcalcifications, as shown in Figs. 7 and 8.
GS and MPGS with bundle adjustment

MPGS with bundle adjustment

or (mm) Pos. (mm) Error (mm)

7 (K9.9, 16.8, 25.5) 1.30

9 (18.5, K16.7, 32.3) 2.10

0 (K38.2, K40.9, 42.9) 2.11

7 (14.3, 8.7, 13.5) 2.37

3 (19.1, 16.4, 25.5) 2.05

4 (5.2, K20.6, 41) 2.41



Fig. 6. Quadrant images used to evaluate the reconstructed locations of the microcalcifications from MPGS and the locations of the microcalcifications from

ultrasound scanning. The red circle presents the location of the reconstructed microcalcifications, and the blue circle presents the locations of the

microcalcifications from ultrasound scanning (For interpretation of the reference to color in this legend, the reader is referred to the web version of this article).

C.-R. Huang et al. / Computerized Medical Imaging and Graphics 30 (2006) 123–133 131
After obtaining the 3D microcalcifications, these 3D

microcalcifications were augmented on the real human body

model in 3D space to show the radiologists the relative

positions in the breast. In our experiments, the human body

model was reconstructed from eight images surrounding the

patient, each with 458. The projection contours of the

reconstructed 3D human breast model were used in
Fig. 7. Three-dimensional reconstruction of microcalcifications from CC

and MLO views. The gray spheres represent the vertices of the

microcalcifications in the 3D space.
rectifying the locations of the microcalcifications. After

rectification, the reconstructed 3D microcalcifications were

augmented on the 3D human model to present their relative

locations in the human breast according to the nipple

position. We set 3D human body model as the model shape

and reconstructed microcalcifications models as data shape.

Then based on the location of the nipple, these two models
Fig. 8. Three-dimensional reconstruction of microcalcifications from its CC

and MLO views. The gray spheres represent the vertices of the

microcalcifications in the 3D space.



Fig. 9. Microcalcifications rendered on real human body model.
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can be composed using ICP algorithm. The overlay results

of 3D reconstructed clustered microcalcifications and the

human body model are shown in Fig. 9, where the red

volumes are the reconstructed 3D clustered microcalcifica-

tions. Since the microcalcifications are located inside the

breast, the texture of the human body model in Fig. 9 is set

to partially transparent to show the relative locations of

them. Note that the un-smoothed texture in human body

model is due to the light effects of the different images.
7. Conclusions

In this paper, a MPGS scheme is proposed to

reconstruct the 3D locations of microcalcifications from

two mammograms. The MPGS defines a unique space

using corresponding points and the epipoles retrieved

from the fundamental matrix of the CC and MLO views,

to depict the reconstructed microcalcifications. Consider-

ing that the microcalcifications have been under

compression, a real human body model is also

reconstructed by the MPGS combined with ICP

(MPGS–ICP algorithm) and used as a reference of
uncompressed breast model to rectify the positions of

the microcalcifications. The rectification is conducted

through the concept of the bundle adjustment by

minimizing the distance between the breast contours of

the real human breast model and those obtained from

the mammograms. With this approach, the shape of the

microcalcifications could also be reconstructed, by

projecting the neighboring vertices of the center of the

microcalcifications. Currently, we have proposed auto-

matic detection, registration, and reconstruction of the

microcalcifications from mammograms. Nevertheless, to

avoid the misalignment of the corresponding microcalci-

fications, the radiologists can also manually select and

refine the results provided by the system. Although the

developed technique is still in an early stage, it has

potential to be applied to clinical trials.
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